
Warwick Mathematics Exchange

MA252

Linear
Programming

2023, May 29th

Desync, aka The Big Ree

Front Matter Table of Contents

Contents

Table of Contents i

1 Linear Programming 1
1.1 Polyhedra . 4
1.2 Standard Form . 7

2 The Simplex Algorithm 11
2.1 Geometric Simplex . 11
2.2 Graph Optimisation Problems . 12
2.3 Simplex Tableau . 13

Multivariable Calculus | i

Front Matter Preface

Introduction

This is a supplementary document to go alongside the main MA252 Combinatorial Optimisation module
document.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. This
document was written during the 2022 academic year, so any changes in the course since then may not
be accurately reflected. Also, this module doesn’t have any notes, so the structure of this document is
based on (non-note) material from previous years.

Notes on formatting
Due to the nature of this module, I will be mixing mathematical and programming notation, a lot.
obj.flag represents an instance attribute, flag, attached to an object, obj. In algorithm blocks, single
equality (=) or left arrow (←) represents variable assignment while double equality (==) represents an
equality check. Setting a variable to “[]” indicates a list or an array being instantiated.

New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2023-05-29∗

Current Edition: 2023-06-01

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.

Multivariable Calculus | ii

mailto:Warwick.Mathematics.Exchange@gmail.com
mailto:Warwick.Mathematics.Exchange@gmail.com
https://ko-fi.com/desync
https://ko-fi.com/desync

MA252 Linear Programming

1 Linear Programming

A linear program is a problem of the form,

“Minimise c · x for x ∈ Rn, subject to the constraint Ax ≤ b,
where A ∈ Rn×n, b ∈ Rn, and the inequality is considered componentwise.”

The vector c is then called the cost vector or the objective function.

The set,

{x ∈ Rn : Ax ≤ b}

is called the feasible region of the linear program, as it contains every value of x that satisfies the
constraint. The objective is then to find a value of x in the feasible region that yields a minimum value
for c · x.

Example. Minimise
[
1
2

]
· x for x ∈ R2 satisfiying,−1 0

0 −1
2 3

x ≤

00
6


Writing x = [x,y], we can expand out the constraint into the system of equations,

−x ≤ 0

−y ≤ 0

2x+ 3y ≤ 6

which define the feasible region R,

−1 1 2 3 4

−1

1

2

3

4

R

x

y

As a tip, it may be helpful to shade the unwanted region for each inequality so the feasible region is the
only unshaded area left. Otherwise, you might have difficulty deciding which part is shaded by every
inequality, especially for larger constraint matrices.

Combinatorial Optimisation | 1

MA252 Linear Programming

The objective function to minimise is then x+ 2y, and we can picture various values of this function by
looking at the lines x+ 2y = k for various values of k:

−1 1 2 3 4

−1

1

2

3

4

R

x

y

with k decreasing further down. Clearly, the objective function is minimised at the point x = (0,0), with
value 0.

Example. Minimise,
[
−1
2

]
· x for x ∈ R2 satisfiying,

−1 −1
−1 1
1 0
0 1

x ≤


−1
1
2
2


Again, writing x = [x,y], we can expand out the constraint into the system,

−x− y ≤ −1
−x+ y ≤ 1

x ≤ 2

y ≤ 2

with the objective function −x+ 2y = k.

Combinatorial Optimisation | 2

MA252 Linear Programming

−2 −1 1 2 3 4

−2

−1

1

2

3

4

R

x

y

Again, the value of k decreases lower down, so the minimum is achieved at (2,− 1) with value −4.

Now, suppose the objective function was instead x+ y:

−2 −1 1 2 3 4

−2

−1

1

2

3

4

R

x

y

Now, we have a whole line of minimal solutions, and any point on the line x+ y = 1 between x = 0 and
x = 2 is a minimal solution.

Combinatorial Optimisation | 3

MA252 1.1 Polyhedra

1.1 Polyhedra
A hyperplane is a subset of Rn of the form,

{x ∈ Rn : n · x = b}

where n is the normal vector of the plane, while a halfspace is a subset of the form,

{x ∈ Rn : n · x ≤ b}

so the hyperplane given by the equality is the boundary of this set. Notice that we can write a dot
product as,

H = {x ∈ Rn : n⊤x = b}

and we can then consider n as a 1× n matrix.

A polyhedron is the intersection of finitely many halfspaces, and a polytope is a bounded polyhedron, or
equivalently, a polytope is the convex hull of a finite set.

The face of a polyhedron P = {x ∈ Rn : Ax ≤ b} that minimises some vector c ∈ Rn is defined by,

facec(P) = {x ∈ P : ∀y ∈ P, c · x ≤ c · y}

Example. Consider the polyhedron given by,

P =
{
(x,y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
What is the face minimising:

1. c = [1,1];

2. c = [−1,2];

3. c = [0,1]?

P is given by,

1

1

x

y

face[1,1](P) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [1,1] · [x,y] ≤ [1,1] · [x′,y′]

}
=

{
(x,y) ∈ P : ∀(x′,y′) ∈ P, x+ y ≤ x′ + y′

}
So, face[1,1](P) is the set of points where the line x+ y = k intersects P for a minimal value of k:

Combinatorial Optimisation | 4

MA252 1.1 Polyhedra

1

1

x

y

the minimal valued line intersects the polygon at (0,0), giving face[1,1](P) =
{
(0,0)

}
.

Next, take c = [−1,2].

face[−1,2](P) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [−1,2] · [x,y] ≤ [−1,2] · [x′,y′]

}
=

{
(x,y) ∈ P : ∀(x′,y′) ∈ P, − x+ 2y ≤ −x′ + 2y′

}
This time, we look at the line −x+ 2y = k,

1

1

x

y

and now the minimal intersection point is at (1,0), so face[−1,2](P) =
{
(1,0)

}
Next, take c = [0,1].

face[0,1](P) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [0,1] · [x,y] ≤ [0,1] · [x′,y′]

}
=

{
(x,y) ∈ P : ∀(x′,y′) ∈ P, y ≤ y′

}
So the line is now y = k,

Combinatorial Optimisation | 5

MA252 1.1 Polyhedra

1

1

x

y

Now, the minimal intersection points are an entire line segment, so face[−1,2](P) =
{
(x,0) : 0 ≤ x ≤ 1

}
.

Example. Consider the polyhedron given by,

Q =
{
(x,y) ∈ R2 : x ≤ 0, y ≤ 0

}
What is the face minimising c = [1,1]?

face[1,1](Q) =
{
(x,y) ∈ Q : ∀(x′,y′) ∈ Q, [1,1] · [x,y] ≤ [1,1] · [x′,y′]

}
=

{
(x,y) ∈ Q : ∀(x′,y′) ∈ Q, x+ y ≤ x′ + y′

}
We look at the line x+ y = k:

−1

−1

x

y

so the minimum does not exist, and face[1,1](Q) = ∅.

We have been solving these problems by finding minimal points, so we can also characterise faces as,

facec(P) = {x ∈ P : ∀y ∈ P, c · x ≤ c · y}

=

{
Ax ≤ b : c · x = min

y∈p
c · y

}

Combinatorial Optimisation | 6

MA252 1.2 Standard Form

and we can see that facec(P) is a polyhedron if the minimum exists, and is otherwise empty.

The linear program,

“Minimise c · x for x ∈ Rn such that Ax = b.”

is equivalent to,

“Find y ∈ facec(P) where P = {x ∈ Rn : Ax ≤ b} and compute c · y.”

The linear span of a polyhedron P is the subspace,

span({x− y : x,y ∈ P})

of Rn. The dimension of P is the dimension of its linear span.

Faces of dimension 0 are called vertices, and faces of dimension 1 are called edges.

1.2 Standard Form
Recall that a linear program is a problem of the form,

“Minimise c · x for x ∈ Rn such that Ax ≤ b.”

where A ∈ Rn×n and b ∈ Rn.

A linear program is in standard form if it can be written as,

“Minimise c · x for x ∈ Rn such that Ax = b, and x ≥ 0.”

where A ∈ Rd×n and b ∈ Rd.

We can convert any linear program into standard form:

Algorithm 1 Linear Program Standard Form

1: Split each component xi of x into xi = x+
i − x−

i .
2: Add new variables to the inequality constraints to give Ax+ s = b.
3: Change the components ci of the cost vector c into ci = (c+i , − c−i), and set any components

corresponding to slack variables to cs = 0.

Example. Transform the following problem into standard form:

Minimise
[
1
0

]
· x for x ∈ R2 such that, 

1 1
1 −1
−1 1
−1 −1

x ≤


1
1
1
1


The constraint matrix gives,

x1 + x2 ≤ 1

x1 − x2 ≤ 1

−x1 + x2 ≤ 1

−x1 − x2 ≤ 1

Combinatorial Optimisation | 7

MA252 1.2 Standard Form

Perform the replacements on the components, and add slack variables to remove the inequalities to
obtain,

x+
1 − x−

1 + x+
2 − x−

2 + s1 = 1

x+
1 − x−

1 − x+
2 + x−

2 + s2 = 1

−x+
1 + x−

1 + x+
2 − x−

2 + s3 = 1

−x+
1 + x−

1 − x+
2 + x−

2 + s5 = 1

which can be written in matrix form as,


1 −1 1 −1 1 0 0 0
1 −1 −1 1 0 1 0 0
−1 1 1 −1 0 0 1 0
−1 1 −1 1 0 0 0 1





x+
1

x−
1

x+
2

x−
2

s1
s2
s3
s4


≤


1
1
1
1



Then, the original cost vector gives the constraint
[
1
0

]
x = x1, so our new cost vector is,

c =



1
−1
0
0
0
0
0
0


Example. Transform the following problem into standard form:

Minimise
[
2
3

]
· x for x ∈ R2 such that,  1 0

0 1
−1 −1

x ≤

 1
1
−1


The constraint matrix gives,

x1 ≤ 1

x2 ≤ 1

−x1 − x2 ≤ −1

so,

 1 −1 0 0 1 0 0
0 0 1 −1 0 1 0
−1 1 −1 1 0 0 1




x+
1

x−
1

x+
2

x−
2

s1
s2
s3


=

 1
1
−1



Combinatorial Optimisation | 8

MA252 1.2 Standard Form

with cost vector given by,

c =



2
−2
3
−3
0
0
0


To solve linear programs, we often look for faces of the feasible region. The standard form makes it easier
to find vertices as solutions.

A vector y ∈ Rn is a basic solution of a linear program if Ay = b and the columns of A corresponding
to non-zero entries of y are linear independent. That is, if A = [A1|A2| · · · |An] and y = [y1,y2, . . . ,yn],
then {Ai : yi ̸= 0} is a linearly independent set.

A basic feasible solution is a basic solution y ∈ Rn such that y ≥ 0.

We will write Ai for the ith column of a matrix A, and ai for the ith row of A. That is,

A = [A1|A2| · · · |An] =


a1
a2
...
ad



Example. Minimise


1
2
0
−1

 · x for x ∈ R4 such that x ≥ 0, and,

[
1 0 1 −2
0 1 1 −2

]
︸ ︷︷ ︸

A

x =

[
3
−2

]
︸ ︷︷ ︸

b

y = [5,0,−2,0] is a basic solution since Ay = b and the first and third columns of A, are linearly
independent, but it is not a basic feasible solution since y contains a negative component.

y = [5,0,0,1] is a basic feasible solution since Ay = b and the first and last columns of A, are linearly
independent, and y ≥ 0.

To construct a basic solution, we choose d linearly independent columns (Ai)i∈I with I ⊆ [n] and |I | = d,
and set yi = 0 for each i ̸∈ I . Augment these columns together into a d×d matrix B = [Ai1 |Ai2 | · · · |Aid].

Because the (Ai) are linearly independent, B is invertible, so By = b has a unique solution given by

yB = B−1b ∈ Rd

where the coordinates in Rd are indexed by I . Then, we set,

y =

{
(yB)i i ∈ I
0 i ̸∈ I

That is, we invert a matrix made of linearly independent columns of A, then add in a 0 entry to the
solution vector wherever we skipped a column from A.

Combinatorial Optimisation | 9

MA252 1.2 Standard Form

Example. Consider the polygon defined by,

P =
{
(x,y) ∈ Rn : −x+ y ≤ 1, x+ y ≤ 3, x ≥ 0, y ≥ 0

}
This can be written in matrix form as,

[
−1 1 1 0
1 1 0 1

]
x
y
s1
s2

 =

[
1
3

]

noting that we did not have to split x and y as we are already given x ≥ 0 and y ≥ 0.

One linearly independent set is given by A3 and A4, so,

B =

[
1 0
0 1

]
and,

yB = B−1b

=

[
1 0
0 1

]−1 [
1
3

]
=

[
1
3

]
Since we skipped the first two columns, we have,

y =


0
0
1
3


Because all the components are positive, this is a basic feasible solution.

Another linearly independent set is given by A1 and A4, so,

B =

[
−1 0
1 1

]
and,

yB = B−1b

=

[
−1 0
1 1

]−1 [
1
3

]
=

[
−1
4

]
Columns 2 and 3 were omitted from B, so we have,

y =


−1
0
0
4


This time, we have a negative component, so this basic solution is not feasible.

Theorem 1.1. A vector v ∈ Rn is a basic feasible solution of a linear program if and only if it is a
vertex of the corresponding polyhedron defined by P = {x ∈ Rn : Ax = b,x ≥ 0}.

Theorem 1.2. Either minx∈P c ·x = −∞, or there is a basic feasible solution y with c ·y ≤ c ·x for all
x ∈ P .

Combinatorial Optimisation | 10

MA252 The Simplex Algorithm

2 The Simplex Algorithm

2.1 Geometric Simplex
Recall that an edge of a polyhedron is a one dimensional face. If a vector y ∈ P lies on an edge E,
but does not lie on a vertex, then, up to scaling, there is a unique vector d such that y + λd ∈ E for
sufficiently small λ. That is, d is the direction vector pointing along the edge.

Walking along an edge like this, we can eventually reach a vertex (assuming the edge is not a half-line
that goes infinity in some direction). Because basic feasible solutions are vertices of polyhedra, this
suggests an algorithm to find optimal basic feasible solutions:

1. Find a vertex of P .

2. Walk along edges of P , moving to vertices that reduce c · x.

3. Stop when this isn’t possible anymore.

Let y ∈ Rn be a basic feasible solution obtained from the d × d matrix BI = [Ai1 |Ai2 | · · · |Aid]i∈I
consisting of columns of A, indexed by I ⊆ [n] with |I | = d. Recall that yi = 0 for all i ̸∈ I by
construction.

Denote by yI the vector obtained by restricting y to coordinates in I. Then, BIyI = b.

Let k ̸∈ I . We will look for a vector d with dj = 0 for all j ∈ I ∪ {k}, dk = 1, and y+ λd is feasible for
some λ > 0.

Then,

A(y + λd) = b

Ay + λAd = b

b+ λAd = b

λAd = 0

So Ad = 0, and we can rewrite this as,

0 =

n∑
j=1

Ajdj

Recall that dj = 0 for all j ̸∈ I ∪ {k}, and dk = 1, so,

=
∑
j∈I

Ajdj +Ak

= BIdI +Ak

so dI = −B−1
I Ak, giving,

dj =


−
(
B−1Ak

)
j

j ∈ I
1 j = k

0 j ̸∈ I ∪ {1}

This vector d is called the kth basic direction at y, and it depends on the choice of I and k.

Note that it is not always possible to find λ > 0 such that y + λd is feasible. That is, that y + λd ≥ 0.

A basic feasible solution y is degenerate if |{i : yi ̸= 0}| < d, and is nondegenerate otherwise.

Combinatorial Optimisation | 11

MA252 2.2 Graph Optimisation Problems

Theorem 2.1. If y is a nondegenerate basic feasible solution, then the kth basic direction is feasible.

If this is the case, then d points along an edge, and we can move along it. Furthermore,

c · (y + λd) = c · y + λc · d

so the cost decreases if and only if c · d < 0. We also have,

c · d =

n∑
j=1

cjdj

=
∑
j∈I

cjdj + ck

= cI · dI + ck

= cI · (−B−1
I Ak) + ck

= ck − c⊤I B
−1
I Ak

The reduced cost in direction k with respect to a basic feasible direction corresponding to I is given by
ci = ci − c⊤I B

−1
I Ak, and the reduced cost vector is given by c = (ci)

n
i=1

Note that if y is degenerate, then λ• may be zero, and y′ = y.

Theorem 2.2. Let y be a basic feasible solution corresponding to I ⊆ [n], and let c be the reduced cost
vector. Then,

• If c ≥ 0, then y is optimal.

• If y is optimal and nondegenerate, then c ≥ 0.

Algorithm 2 Geometric Simplex

1: Find a basic feasible solution y corresponding to I ⊆ [n].
2: Compute the reduced cost vector given by cj = cj − c⊤I B

−1
I Aj , where cj is the jth component of the

cost vector c. If c ≥ 0, then y is optimal, and we may stop.
3: Choose k ̸∈ I with ci < 0, and compute the kth basic direction d, given by

dj =


−
(
B−1Ak

)
j

j ∈ I
1 j = k

0 j ̸∈ I ∪ {1}

If d ≥ 0, then the optimal cost is −∞, and we may stop.
4: If dj < 0 for some j, then let λ• = mindj<0

−yj

dj
, and let ℓ be the value of j that achieves this

minimum. That is, λ• = −yℓ

dℓ
.

5: Set y = y + λ•d and I = (I \ {ℓ}) ∪ {k}. Go to step 2.

Example. TO DO (I want to die.)

See spchee’s notes (partial example).

2.2 Graph Optimisation Problems
The following problems on graphs can all be expressed as linear programs:

1. MST (Minimum Spanning Tree);

Combinatorial Optimisation | 12

https://discord.com/channels/895615954178965544/988505335071387680/1113519807929794620

MA252 2.3 Simplex Tableau

2. SHORTEST-PATH;

3. MAX-FLOW;

4. MAXIMUM-MATCHING;

TO DO. See lecture 21 notes or spchee’s notes.

2.3 Simplex Tableau
This algorithm is rather involved, so we begin with an annotated worked example to give an overview of
the method.

Example. Minimise P =

[
3
−1

]
x for x ∈ R2 subject to,

[
2 1 1 0
1 4 0 1

]
x
y
r
s

 =

[
12
8

]

and x,y,r,s ≥ 0. (Here, r and s are slack variables.)

The initial tableau is written as follows:

Basic
variable x y r s Value

r 2 1 1 0 12

s 1 4 0 1 8

P 3 −1 0 0 0

The first row of the table shows the first constraint, the second row shows the second constraint, and
the final objective row shows the objective function.

The “Basic variable” column indicates the variables that are not currently at zero. We start at the vertex
(0,0), so x = y = 0.

Any variables in a simplex variable that are not basic variables have the value 0.

If x = y = 0, then r = 12 from the first row of the constraint matrix, and similarly, s = 8. We currently
therefore have,

x =


0
0
12
8


as our basic feasible solution with total value P = 0.

We scan the objective row of the tableau for the most negative number. This gives the pivot column. In
this case, the pivot column is the y column.

For each other row, we then calculate a θ value, each given by dividing the value entry by the pivot entry.

Basic
variable x y r s Value θ value

r 2 1 1 0 12 12/1 = 12
s 1 4 0 1 8 8/4 = 2
P 3 −1 0 0 0

Combinatorial Optimisation | 13

https://moodle.warwick.ac.uk/pluginfile.php/2545627/course/section/446366/MA252Lecture21.pdf
https://discord.com/channels/895615954178965544/988505335071387680/1113884123300376628

MA252 2.3 Simplex Tableau

Next, we select the row containing the smallest positive θ value to be the pivot row.

Basic
variable x y r s Value θ value

r 2 1 1 0 12 12

s 1 4 0 1 8 2

P 3 −1 0 0 0

The entry at the intersection is then the pivot. We divide the values in the pivot row by the pivot,
and replace the basic variable in the pivot row with the variable in the pivot column. In this case, s is
replaced with y:

Basic
variable x y r s Value Row

operation
r 2 1 1 0 12

y 1
4 1 0 1

4 2 R2÷ 4

P 3 −1 0 0 0

Now use the pivot row to eliminate the pivot term from every other row:

Basic
variable x y r s Value Row

operation
r 7

4 0 1 − 1
4 10 R2−R1

y 1
4 1 0 1

4 2

P 13
4 0 0 1

4 2 R3 +R2

There are no negative values in the objectie row, so the solution is optimal. We read the entries in the
value column for each variable, to obtain x = 0, y = 2, r = 10, and s = 0, recalling that any variable not
listed in the first column is 0. This gives the vector,

x =

[
0
2

]
We also have P = −2 (the simplex tableau is a maximisation method, so we’ve actually maximised the
negative of P , so we need to negate the final value).

Algorithm 3 Simplex Tableau

1: Draw the tableau(x) with a basic variable column on the left, one column for each variable (including
slack variables), and a value column. Add a row for each constraint, and the bottom row for the
objective function.

2: Enter the coefficients of the variables in the appropriate cells to form the initial tableau.
3: Find the most negative entry in the objective row to obtain the pivot column.
4: Calculate the θ values for each of the constraint rows, where θ is the value term divided by the pivot

term.
5: Select the row with the smallest positive θ value to be the pivot row.
6: The element in the pivot row and pivot column is the pivot.
7: Divide the pivot row by the pivot, and change the basic variable in the first column to the variable

at the top of the pivot column.
8: Use the pivot row to eliminate the pivot variable from other rows.
9: Repeat steps 3 to 8 until there are no negative values in the objective row.

10: The tableau is now optimal, and the non-zero values can be read off using the basic variable and
value columns. If the objective function is to be minimised, take the negative of the objective value.

Combinatorial Optimisation | 14

	Table of Contents
	Linear Programming
	Polyhedra
	Standard Form

	The Simplex Algorithm
	Geometric Simplex
	Graph Optimisation Problems
	Simplex Tableau

